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Abstract— Dealing with the uncertain high-frequency
gain matrix, denoted as Kp, is a fundamental problem in
multivariable adaptive control systems. In this paper, we
propose a new solution for parameter estimation and adap-
tive control for a general class of multi-input multi-output
discrete-time linear time-invariant systems. The proposed
scheme does not require any prior knowledge of the sign
or bound information of Kp, and thus, significantly relaxes
the design conditions in traditional multivariable adap-
tive control systems. Compared with the commonly used
Nussbaum gain or multi-model techniques for addressing
the unknown signs of Kp, the proposed scheme does not
rely on any additional design conditions or any switching
mechanism, while still ensuring closed-loop stability and
asymptotic output tracking. Specifically, an output feed-
back adaptive control law is developed based on a matrix
decomposition technique, which leads to derivation of a
modified estimation error model. Subsequently, a gradient-
based parameter update law is formulated only relying on
the non-zero condition of the leading principle minors of
Kp. Through designing gain functions and stable filters, the
controller is always non-singular and does not involve any
causal contradiction problem. Simulation study showcases
the design process and demonstrates the effectiveness of
the proposed scheme.

Index Terms— Parameter estimation, asymptotic output
tracking, high-frequency gain matrix, singularity problem

I. INTRODUCTION

THE presence of uncertainties within systems and envi-
ronments poses a significant challenge to the feasibility

of control algorithms and the overall system performance.
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Adaptive control, serving as a powerful tool for effectively
addressing parametric, structural, and environmental uncer-
tainties, has gained popularity across various engineering and
scientific domains. Over the past few decades, substantial
efforts have been dedicated to the field of adaptive control,
aiming to counteract the adverse effects of uncertainties. These
endeavors have resulted in numerous notable achievements, as
evidenced by a lot of works (see, for example, [1]–[8]).

It is common for practical systems to have multiple in-
puts and multiple outputs, especially in emerging technolo-
gies. As a result, the adaptive control of multi-input multi-
output (MIMO) systems has been a focal point for con-
trol researchers, given its theoretical challenges and practical
significance. In contrast to single-input single-output (SISO)
systems, multivariable systems feature distinct characteristics
such as dynamic coupling between input and output signals,
a unique structure referred to as the interactor matrix, and a
specific gain matrix known as the high-frequency gain matrix.
These characteristics give rise to novel challenges for the
adaptive control design and analysis of MIMO systems. In
recent decades, research in multivariable adaptive control has
addressed a multitude of important and challenging problems,
yielding a great deal of rigorous and promising solutions
(see, for example, [9]–[14]). It is worth mentioning that the
renowned backstepping technique, initially introduced in [3],
plays a significant role in the adaptive control design and
analysis of high-order nonlinear systems.

In spite of remarkable success, numerous open issues persist
in the realm of adaptive control for MIMO systems and merit
further study and exploration. A fundamental and longstanding
challenge lies in addressing the uncertainty associated with
the high-frequency gain matrix, denoted as Kp. In some
earlier results, it is assumed that a matrix Sp is known,
satisfying the condition that KpSp is symmetric positive ([1],
[15], [16]). Leveraging this assumption, a stable parameter
estimator can be formulated to achieve parameter estimation
and simultaneously avoid singularity of the adaptive control
law. In [17], an improved adaptive control method was devised
under a less restrictive condition KpS

T
p + SpK

T
p > 0 with

a known matrix Sp for systems with a fixed vector relative
degree. Subsequently, employing some matrix decomposition
techniques, various model reference adaptive control (MRAC)
methods have been proposed under the assumption that the
leading principal minors of Kp are non-zero and their signs
are known ( [15], [18], [19]). This assumption parallels the
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prior knowledge of sign information about the high-frequency
gain, denoted as kp, in SISO systems, and substantially eases
the conditions imposed on Kp.

Despite considerable progress, the requirement for prior sign
information still restricts the applicability of adaptive control
methods. The sign information of the high-frequency gain
(matrix) indicates the control directions and may be unknown
for many practical control problems in engineering, such as au-
topilot design of uncertain ships and uncalibrated visual servo-
ing ([20]). Hence, further relaxing the conditions on the high-
frequency gain (matrix) in adaptive control is of paramount
importance. For the case of SISO systems, achievements on
this issue are remarkable. A pioneering work is [21], where the
author proposed a controller by introducing a function, known
as Nussbaum gain function, to stabilize a special class of SISO
continuous-time first-order systems without requiring the sign
information of kp. Since then, Nussbaum gain function based
control methods have been extensively investigated for various
SISO systems ( [22]–[29]). Recently, [30] first extended the
Nussbaum gain function technique to MIMO systems to cope
with unknown sign knowledge of Kp required in [18] and
[19], where a novel multiple Nussbaum gain functions and
backstepping based adaptive control method was developed for
a class of MIMO continuous-time linear time-invariant (LTI)
systems. Besides Nussbaum gain function, the multi-model
switching technique is also used in adaptive control systems
to tackle the uncertain sign information ([31]–[34]). This
kind of technique employs multiple controllers and estimators
to seek for appropriate control directions by introducing a
switching mechanism. Taking [31] as an example, a projection
based state feedback multiple-model adaptive control method
was designed for MIMO continuous-time systems without
requiring information about the signs of Kp, but assuming the
prior bound knowledge of unknown parameters, where 2M

controllers and 2M parameter estimators were deployed for a
system with M inputs and M outputs. In addition, some other
methods have been reported in the literature to address the
challenge of unknown sign information of Kp. For instance, an
indirect multivariable adaptive control method was developed
in [35] to weaken the assumptions of high-frequency gain
matrix, where a hysteresis and projection mechanism was used
to avoid singularity and an upper bound on the norm of Kp was
needed as the prior knowledge. A modified model reference
adaptive controller for multivariable continuous-time systems
was introduced in [36], [37] by using the dynamic regressor
extension and mixing parameter estimation technique, which
removed the necessity for prior knowledge of Kp but required
an additional interval excitation condition on the regressor
vector.

Although some advancements have been made for dealing
with unknown sign information of Kp in adaptive control
of MIMO systems, some open problems still persist. As
highlighted in [38], [39], the Nussbaum gain method is known
to result in adverse oscillation performance due to the nature of
Nussbaum gain function. Regarding the multi-model switching
scheme, as indicated in [30], it usually incurs a substantial
computational burden and needs prior bound knowledge of
uncertain parameters. Moreover, persistent controller switch-

ing may exist in the multi-model adaptive control. In addition,
the majority of works about this problem tend to focus on
systems in continuous-time with discrete-time systems receiv-
ing limited attention. Recently, [40] proposed a novel MRAC
method for a special class of SISO continuous-time systems
with relative degree one. This method removes the need for
prior information of kp and achieves asymptotic tracking
performance without resorting to Nussbaum gain function or
multi-model technique. An extension to SISO discrete-time
systems with arbitrary relative degrees is presented in [41].
However, the applicability of the method proposed in [40]
and [41] to MIMO scenarios for dealing with unknown sign
and bound information of the high-frequency gain matrix Kp

remains unclear.
Motivated by the aforementioned observations, two ques-

tions may be raised: “what level of knowledge regarding Kp

is required for adaptive control?” and “how can the adverse
persistent switching issue often occuring in existing results be
avoided”. In this paper, we give analytical solutions to the
above questions and propose a novel modified MRAC scheme
for a general class of MIMO discrete-time LTI systems. The
main contributions of this paper are as follows.
(i) A new matrix decomposition based output feedback adap-

tive controller along with a gradient based parameter
update law is formulated for a general class of MIMO
discrete-time LTI systems. It ensures closed-loop stability
and asymptotic output tracking without introducing any
switching mechanism that often used in existing methods,
such as Nussbaum gain function based method, multi-
model based method, etc.

(ii) In comparison to the existing results, the proposed adap-
tive control scheme removes the need for prior sign infor-
mation of Kp, obviates the requirement for knowledge of
system uncertain parameter bounds, and does not rely on
any type of excitation condition. Regarding the question
of “what level of knowledge regarding Kp is required for
adaptive control”, our solution demonstrates that only the
non-zero information pertaining to the leading principal
minors of Kp is needed.

(iii) The developed adaptive controller and parameter update
law are guaranteed to remain non-singular at all times by
incorporating well-designed time-varying gain functions.
The introduction of some filtered operators to handle
unavailable signals in the adaptive control process guar-
antees that the proposed control method does not involve
any casuality contradiction problem.

The rest of this paper is organized as follows. In section II,
we articulate the problem to be addressed and the technical
issues to be addressed. Section III comprehensively presents
the entire adaptive control design process, encompassing the
controller structure, the form of parameter update law, and
the stability analysis and tracking performance analysis of
the closed-loop system. The simulation study is depicted in
Section IV. Finally, Section V presents the concluding remarks.

Notation. Throughout this paper, R denotes the set of real
numbers. The symbols z and z−1 represent the time advance
and time delay operators, respectively, i.e., z[x](t) = x(t+1)
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and z−1[x](t) = x(t − 1), where t ∈ {0, 1, 2, 3, ...}, x(t) ≜
x(tT ) for a sampling period T > 0, and x(t) denotes any
signal of any finite dimension. We employ L∞ and L2 to
denote signal spaces defined as L∞ = {x(t) : ||x(·)||∞ <
∞} and L2 = {x(t) : ||x(·)||2 < ∞} with ||x(·)||∞ =
supt≥0 max1≤i≤n |xi(t)| and ||x(·)||2 = (

∑∞
t=0 |x1(t)|2 +

· · · + |xn(t)|2)
1
2 , where x(t) = [x1(t), ..., xn(t)]

T denotes
any signal on Rn. We use c > 0 to denote a generic signal
bound, and τ(t) to denote a generic function belonging to
L2 ∩ L∞ which converges to zero as t tends to ∞. For a
vector signal x(t), ∥x(t)∥ denotes its Euclidean norm. The
notation diag{b1, ..., bN} represents the diagonal matrix with
diagonal elements b1, ..., bN . The notation IM denotes the
identity matrix of size M ×M(M ≥ 2), while 0M denotes a
square matrix of size M ×M with all elements equal to zero.

II. PROBLEM STATEMENT

This section presents the formulation of the system model,
the control objective, and design conditions. Additionally, it
also outlines the technical issues to be resolved in this paper.

A. System Model
Consider the following MIMO discrete-time LTI system

model

y(t) = G(z)[u](t), t ≥ t0, (1)

where y(t) = [y1(t), ..., yM (t)] ∈ RM is the system output
vector and u(t) = [u1(t), ..., uM (t)] ∈ RM is the system input
vector. The transfer matrix G(z) = Z(z)P−1(z) is an M×M
strictly proper rational matrix with full rank, where Z(z) and
P (z) are M × M right coprime polynomial matrices. The
matrix P (z) is both column proper and possesses a degree
equal to the controllability index of G(z). In this work, we
particularly focus on systems with multiple inputs and multiple
outputs, i.e., M ≥ 2. This facilitates consistent expressions of
some definitions in the following. For the case of M = 1, a
valid solution can be found in [41].

For the adaptive control of the system (1), we initially
introduce the following lemma. This lemma elucidates a
crucial concept concerning MIMO discrete-time LTI systems,
referred to as the modified left interactor matrix, which plays a
significant role in parametrization and adaptive control design.

Lemma 1: ([15]) For any M ×M strictly proper full rank
rational matrix G(z), there exists an M×M lower triangular
polynomial matrix ξm(z), of the form

ξm(z) =


d1(z) 0 · · · 0 0
hm21(z) d2(z) 0 0 0

...
...

...
...

...
hmM1(z) · · · · · · hmMM−1(z) dm(z)

 ,
where hmij (z), j = 1, ...,M−1, i = 2, ...,M , are polynomials
and di(z), i = 1, ...,M , are monic stable polynomials of
degree li > 0, such that Kp ≜ limz→∞ ξm(z)G(z) is finite
and nonsingular.

The proof of this lemma is available in [15]. The matrix
ξm(z) is called the modified left interactor matrix of G(z). It

possesses a proper and stable inverse, providing characteriza-
tion of the zero structure at infinity of G(z). Meanwhile, Kp

is referred to as the high-frequency gain matrix of G(z).

B. Control Objective and Design Conditions
Control objective. The control objective of this paper is

to design an output feedback adaptive control input u(t) for
the system (1) with unknown G(z) such that the closed-loop
system is stable and the output y(t) tracks a given bounded
reference output signal y∗(t) ∈ RM asymptotically, where

y∗(t) =Wm(z)[r](t) (2)

with Wm(z) being an M × M rational transfer matrix and
r(t) ∈ RM being a bounded external reference input signal.

Assumptions. To accomplish the control objective, the
following design conditions are needed.

(A1). All zeros of G(z) are stable.
(A2). The observability index v of G(z) is known.
(A3). G(z) has a known modified left interactor matrix
ξm(z), all poles of Wm(z) are stable, and the zero structure
at infinity of Wm(z) is the same as that of G(z), i.e.,
limz→∞ ξm(z)Wm(z) is finite and nonsingular.
(A4). All leading principal minors of the high-frequency gain
matrix Kp, denoted as ∆1,∆2, ...,∆M , are non-zero.

Assumption (A1) implies the minimum phase nature of
the system (1). and is a standard design condition in the
literature ([2], [10], [15], [16]). Assumption (A2) is employed
to determine the dimension of estimated parameter vectors and
can be further relaxed as an upper bound on the observability
index v of G(z) is known. Assumption (A3) is analogous
to the relative degree condition of a SISO system, and it is
essential for selecting a stable reference model system that
generates y∗(t) for model matching. According to Assumption
(A3), without loss of generality, we choose Wm(z) = ξ−1

m (z)
for the reference model (2), where ξ−1

m (qmz) is stable for
some qm ∈ (0, q) ⊂ (0, 1) ( [2], [15], [16]). It is noted
that ξm(z) may depend on the parameters of G(z). However,
some techniques can make ξm(z) diagonal, allowing it to
be specified independently of G(z) ([15]). In this paper, we
mainly focus on addressing the uncertainty associated with
the high-frequency gain matrix Kp. Thus, we assume ξm(z)
is known a priori. Assumption (A4) is akin to assuming
that the high-frequency gain of SISO systems is non-zero.
We illustrate Assumption (A4) by using a linearized aircraft
control system in [42]. Reference [42] shows that when the
inputs consists of engine throttle, elevator, and rudder, and
the outputs are forward velocity, pitch angle, and yaw angle,
the high-frequency gain matrix takes the form of Kp =
[kp1, kp2, kp3] ∈ R3×3, where kp1 = [b011, b031, 0]

T , kp2 =
[b012, b032, 0]

T , kp3 = [0, 0, b064 cos(1/θ0)]
T . As elucidated in

[42], b011, b012, b031, b032, and b064 are the control gains from
engine throttle to forward acceleration, from the elevator to
forward acceleration, from engine throttle to pitch accelera-
tion, from the elevator to pitch acceleration, and from rudder
to yaw acceleration, respectively. Moreover, θ0 represents the
value of the Euler pitch angle θ at the wings-level steady-state
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equilibrium point that ensures cos(1/θ0) > 0. Consequently,
in light of the structure of Kp, Assumption (A4) necessitates
that ∆1 = b011 ̸= 0, ∆2 = b011b032 − b012b031 ̸= 0, and
∆3 = (b011b032 − b012b031)b064 ̸= 0. This example illustrates
the reasonability of Assumption (A4). If some principal minors
of Kp are zero but Kp is nonsingular, a permutation matrix P
can be introduced such that PKp possesses nonzero leading
principal minors. With this modification, the control design
can proceed using the modified high-frequency gain matrix
PKp ([15]).

C. Clarification of High-Frequency Gain Matrix Issue

In discrete-time adaptive control for the system (1), tradi-
tional assumptions are (A1)-(A3), supplemented by an addi-
tional requirement on Kp as

(A4a). An M × M matrix Sp is known such that 2IM >
KpSp = (KpSp)

T > 0.

Evidently, this assumption is much more restrictive than
Assumption (A4). This is due to the fact that the traditional
model reference adaptive controlller results in a bilinear form
error model. In such a scenario, (A4a) is necessary to derive
a stable parameter update law. Readers are referred to [15]
for further details about (A4a) based MRAC design. In the
SISO case, that is M = 1, Kp reduces to a scalar whose
sign information is sufficient for devising a stable parameter
update law, i.e., Sp can be selected as the sign of kp. However,
in the MIMO scenario, determining a prior knowledge of
Kp for a stable parameter update law proves considerably
challenging, i.e., Sp in Assumption (A4a) is hard to choose.
Thus, (A4a) indicates a certain level of restrictiveness when
applying traditional MRAC in practical situations.

In fact, the condition (A4a) on Kp can be relaxed if certain
structural information about Kp is accessible. One of those is
as follows.

(A4b). All leading principal minors of the high-frequency gain
matrix Kp are non-zero and their signs are known. Some upper
bounds d0i on |d∗i |, i.e., |d∗i | < d0i , i = 1, ...,M, are known
with d∗1 ≜ ∆1, d

∗
i ≜

∆i

∆i−1
, i = 2, ...,M .

The signs of the leading principal minors of Kp in Assump-
tion (A4b) are commonly referred to as the sign information
of Kp. This information reflects control directions in practical
applications and can be acquired at times by considering the
physical meanings of inherent system characteristics. There-
fore, compared with Assumption (A4a) based MRAC, control
methods based on (A4b) impose relatively less restrictive
conditions on Kp, rendering them more practical for real-
world applications. Currently, assuming the known sign infor-
mation of Kp to derive stable parameter estimators remains
the predominant method in the field of adaptive control.

However, addressing the unknown sign information of the
high-frequency gain (matrix) persists as a fundamental and
enduring challenge in adaptive control, particularly within
the domain of multivariable adaptive control. Actually, the
sign information of high-frequency gain (matrix) may often
be unknown in various engineering control problems ([20]).

Although big progress has been made in adaptive control for
SISO systems with unknown sign information of the high-
frequency gain, there is a notable scarcity of studies addressing
the design of control methods for MIMO systems without
knowledge of the sign information of Kp. It is noteworthy
that most adaptive control methods employ the Nussbaum
gain function to address unknown control directions, which
is initially developed for SISO systems and extended a lot
till now ([21]). In [30], a Nussbaum gain function based
adaptive backstepping control method is proposed for MIMO
continuous-time LTI systems, which only requires the non-
zero condition of leading principal minors of Kp. However, the
proposed scheme may encounter a system oscillation problem.
This is attributed to the inclusion of oscillation functions,
representing a typical problem associated with Nussbaum
gain function methods. Regarding the multi-model switching
method, the inherent disadvantages are that the prior bound
knowledge of the uncertain parameters needs to be known,
parameter estimation for multiple models often leads to com-
putational burden, and controller switching may be persistent.
Consequently, there is still an open challenge in designing
control strategies for MIMO systems that can overcome the
limitations imposed by unknown control directions without
resorting to Nussbaum gain function or multi-model switching.
Particularly, even less work has been done on discrete-time
MIMO systems.

D. Technical Issues

In contrast to traditional multivariable adaptive control
methods, this study solely relies on the assumption that the
leading principal minors of Kp are all non-zero, as stated in
Assumption (A4). It is obvious that (A4) demands less infor-
mation on Kp compared witn (A4b). Consequently, traditional
design methods do not work under this setting.

Recently, [40] proposed a new control method to address
unknown control directions for SISO continuous-time LTI sys-
tems with relative degree one. An extension to SISO discrete-
time LTI systems with arbitrary relative degrees can be found
in [41]. In this study, we aim to extend the novel method
proposed in [40] and [41] to control MIMO discrete-time LTI
systems (1), removing the need for prior sign information
and bound knowledge of Kp. It is far from trivial due to
some special challenges associated with multivariable adaptive
control. Overall, we will address the following challenging
technical issues in this paper
• how to handle dynamic coupling between the inputs and

the outputs to seek for a suitable parameterized model for
parameter estimation and control design of the system (1);

• how to design a well-defined control input vector u(t) to
prevent the introduction of sign or bound information of
Kp into parameter update law for the system (1);

• how to circumvent control gain singularity problems during
the adaptive process and ensure a reasonable casuality in
the adaptive control of the system (1); and

• how to conduct stability analysis and analyze the tracking
performance of the closed-loop system.
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III. A NEW SOLUTION TO MULTIVARIABLE MRAC
In this section, we elaborate on a novel adaptive control

design method. We begin by introducing a fundamental design
equation for model reference control of MIMO discrete-time
LTI systems. Subsequently, we present a decomposition form
of Kp which enables the development of a suitable parameter-
ized model for controller design. Following this, we present the
form of the developed adaptive control law. Further, a gradient
based parameter update law is developed by use of a new type
of estimation error model. Finally, we give the main result
of this study, where the stability and tracking performance
analysis is conducted to substantiate the effectiveness of the
control design.

A. Design Equation
First, we present a fundamental design equation vital for

multivariable MRAC and essential for the subsequent adaptive
control design.

Define the following signals

ω1(t) = F (z)[u](t), ω2(t) = F (z)[y](t),

F (z) =
A(z)

Λ(z)
, A(z) =

[
IM , zIM , · · · , zv−2IM

]T
, (3)

where Λ(z) is a monic polynomial of degree v − 1 such
that Λ(q0z) is stable for some q0 ∈ (0, 1). Then, with the
above specifications of Λ(z), ξm(z), P (z), Z(z), we have the
following lemma.

Lemma 2: ([15]) There exist some constant parameter ma-
trices Θ∗

1 =
[
Θ∗

11, · · · ,Θ∗
1v−1

]T
, Θ∗

2 =
[
Θ∗

21, · · · ,Θ∗
2v−1

]T
with Θ∗

ij ∈ RM×M , i = 1, 2, j = 1, ..., v−1, Θ∗
20 ∈ RM×M ,

and Θ∗
3 = K−1

p ∈ RM×M such that

Θ∗T
1 A(z)P (z) + (Θ∗T

2 A(z) + Θ∗
20Λ(z))Z(z)

= Λ(z) (P (z)−Θ∗
3ξm(z)Z(z)) . (4)

The proof of this lemma can be found in [15]. Actually,
the equation (4) is the well-known matching equation for
output feedback model reference control of MIMO discrete-
time systems.

From (4) and the system model (1), we get

IM −Θ∗T
1 F (z)−Θ∗T

2 F (z)G(z)−Θ∗
20G(z)

= Θ∗
3ξm(z)G(z). (5)

Operating both sides of (5) by any control input u(t) ∈ RM ,
we derive the system signal identity equation

u(t)−Θ∗T
1 ω1(t)−Θ∗T

2 ω2(t)−Θ∗
20y(t)

= K−1
p ξm(z)[y](t). (6)

Combining the equation (6) and the reference model (2), we
obtain

Kp

(
u(t)−Θ∗T

1 ω1(t)−Θ∗T
2 ω2(t)−Θ∗

20y(t)−Θ∗
3r(t)

)
= ξm(z) [y − y∗] (t). (7)

Now we get a parameterized model (7) for the system (1) and
the reference model (2).

Remark 1: When the parameters in the system (1) were
entirely known, the parameterized model (7) inspires the
formulation of a control law as

u(t) = Θ∗T
1 ω1(t) + Θ∗T

2 ω2(t) + Θ∗
20y(t) + Θ∗

3r(t),

which would achieve accurate output tracking for any given
reference output y∗(t). Naturally, an adaptive control law can
be designed as

u(t) = ΘT1 (t)ω1(t) + ΘT2 (t)ω2(t) + Θ20(t)y(t)

+Θ3(t)r(t) (8)

with Θ1(t), Θ2(t), Θ20(t), and Θ3(t) denoting estimates of
Θ∗

1, Θ∗
2, Θ∗

20, and Θ∗
3, respectively, and being updated by

developed parameter update laws. The control law (8) is a
traditional output feedback MRAC law ([15]). Regrettably,
this adaptive control law requires (A4a) to establish a stable
parameter update law as clarified in [15], which is restrictive
in practical applications.

B. Decomposition of Kp

Because the control law (8) induced by the parameterized
model (7) cannot achieve the control objective under Assump-
tion (A4), we need to derive a different parameterized model
suitable for the following control design. Based on Assumption
(A4), Kp can be decomposed as

Kp = LD∗U, (9)

where L is an M ×M unit lower triangular matrix, U is an
M ×M unit upper triangular matrix, and

D∗ = diag {d∗1, d∗2, ..., d∗M}

with d∗1 ≜ ∆1, d
∗
i ≜ ∆i

∆i−1
, i = 2, ...,M . Utilizing the

decomposition equation (9), we express (7) as

D∗U
(
u(t)−Θ∗T

1 ω1(t)−Θ∗T
2 ω2(t)−Θ∗

20y(t)−Θ∗
3r(t)

)
= L−1ξm(z) [y − y∗] (t).

Further, we have

D∗ (u(t)− Φ∗
0u(t)− Φ∗T

1 ω1(t)− Φ∗T
2 ω2(t)− Φ∗

20y(t)− Φ∗
3r(t)

)
= ξm(z)[y − y∗](t) + Θ∗

0ξm(z)[y − y∗](t), (10)

where Φ∗
20 ≜ UΘ∗

20, Φ∗
i ≜ Θ∗

iU
T , i = 1, 2, Φ∗

3 ≜ UΘ∗
3,

Φ∗
0 ≜ IM − U possesses the triangular form as

Φ∗
0 =


0 ϕ∗12 ϕ∗13 · · · ϕ∗1M
0 0 ϕ∗23 · · · ϕ∗2M
...

...
...

. . .
...

0 0 · · · 0 ϕ∗M−1M

0 · · · · · · 0 0

 , (11)

and Θ∗
0 ≜ L−1 − IM possesses the triangular form as

Θ∗
0 =



0 0 0 · · · 0
θ∗21 0 0 · · · 0
θ∗31 θ∗32 0 · · · 0

...
...

...
. . .

...
θ∗M−11 · · · θ∗M−1M−2 0 0
θ∗M1 · · · θ∗MM−2 θ∗MM−1 0


. (12)
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Define the tracking error as e(t) = y(t)− y∗(t). Then, we
denote

ω(t) =
[
ωT1 (t), ω

T
2 (t), y

T (t), rT (t)
]T
,

eξ(t) = ξm(z) [e] (t) = [eξ1(t), · · · , eξM (t)]T ,

eθi(t) = [eξ1(t), · · · , eξi−1(t)]
T ∈ Ri−1, i = 2, ...,M, (13)

and

χ1(t) =
[
u2(t), · · · , uM (t), ωT (t)

]T
,

χ2(t) =
[
u3(t), · · · , uM (t), ωT (t)

]T
,

...
χM−1(t) =

[
uM (t), ωT (t)

]T
,

χM (t) = ω(t). (14)

For Φ∗
0 in the form of (11), we denote

ϕ∗1 =
[
ϕ∗12, ϕ

∗
13, · · · , ϕ∗1M ,

[
Φ∗T

1 ,Φ∗T
2 ,Φ∗

20,Φ
∗
3

]
1

]T
,

ϕ∗2 =
[
ϕ∗23, ϕ

∗
24, · · · , ϕ∗2M ,

[
Φ∗T

1 ,Φ∗T
2 ,Φ∗

20,Φ
∗
3

]
2

]T
,

...

ϕ∗M−1 =
[
ϕ∗M−1M ,

[
Φ∗T

1 ,Φ∗T
2 ,Φ∗

20,Φ
∗
3

]
M−1

]T
,

ϕ∗M =
[
Φ∗T

1 ,Φ∗T
2 ,Φ∗

20,Φ
∗
3

]T
M
,

where [Φ∗T
1 ,Φ∗T

2 ,Φ∗
20,Φ

∗
3]i is the i-th row of

[Φ∗T
1 ,Φ∗T

2 ,Φ∗
20,Φ

∗
3].

For Θ∗
0 in the form of (12), we further denote

θ∗2 = θ∗21 ∈ R,
θ∗3 = [θ∗31, θ

∗
32]

T ∈ R2,

...
θ∗M−1 = [θ∗M−11, · · · , θ∗M−1M−2]

T ∈ RM−2,

θ∗M = [θ∗M1, · · · , θ∗MM−1]
T ∈ RM−1.

Then, the equation (10) can be expressed as

eξ1(t) = d∗1(u1(t)− ϕ∗T1 χ1(t)),

eξi(t) + θ∗Ti eθi(t) = d∗i (ui(t)− ϕ∗Ti χi(t)), i = 2, ...,M,(15)

for any control input u(t) = [u1(t), ..., uM (t)]T . Now we get
Kp decomposition based parameterized models (10) and (15),
which are crucial for the following control design.

Remark 2: The Kp decomposition based parameterized
model (10) indicates that a control law designed as

u(t) = Φ∗
0u(t) + Φ∗T

1 ω1(t) + Φ∗T
2 ω2(t) + Φ∗

20y(t)

+Φ∗
3r(t)

would achieve accurate output tracking if the parameters of
the system (1) were known. Accordingly, an adaptive control
law can be designed as

u(t) = Φ0(t)u(t) + ΦT1 (t)ω1(t) + ΦT2 (t)ω2(t) + Φ20(t)y(t)

+Φ3(t)r(t), (16)

where Φ0(t), Φ1(t), Φ2(t), Φ20(t), and Φ3(t) denote esti-
mates of Φ∗

0, Φ
∗
1, Φ

∗
2, Φ

∗
20, and Φ∗

3, respectively. Actually, this

is a feasible adaptive control strategy. However, in order to up-
date controller parameters in (16), Assumption (A4b) is needed
for developing a stable adaptive law. That is, this control law
cannot remove the requirement for the sign information of
Kp. In fact, there are some other Kp decomposition based
parameterized models devoting to develop practical adaptive
control laws under weak assumptions on Kp ( [15], [18],
[19]). However, it is regret that all these control methods still
rely on the prior sign information of Kp. It is noted that
the LD∗U decomposition based parametrization model (15)
exhibits a form of partial decoupling for the system inputs
and outputs. Moreover, such a form allows each input to
adjust the system behavior based on individual estimates of
the scalar d∗i and the vector parameter ϕ∗i . This capability is
crucial in dealing with the interactions between multiple input-
output pairs efficiently, which is especially valuable in high-
dimensional systems where computational burdens should be
addressed.

C. Controller Structure

Now, we begin to develop a new version of the control law
for the system (1) under the Assumption (A4). First, we define

δ∗i = d∗iϕ
∗
i , i = 1, ...,M.

For u(t) = [u1(t), ..., uM (t)]T , the control law of this paper
is designed as

ui(t) =
1

1 + αi(t)di(t)
(ϕTi (t)χi(t) + αi(t)δ

T
i (t)χi(t)) (17)

for i = 1, ...,M , where ϕi(t), δi(t), di(t) are estimates of
ϕ∗i , δ

∗
i , d

∗
i , respectively, and αi(t) ∈ R, i = 1, ...,M , are gain

functions to be designed later to ensure ui(t), i = 1, ...,M ,
are nonsingular in the control process.

Remark 3: From the definitions of χi(t), i = 1, ...,M , in
(14), we see that the signal χi−1(t) contains ui(t) for i =
2, ...,M . Therefore, to ensure a reasonable casuality in control
design, it is necessary to initially calculate the control input
uM (t) using accessible χM (t). Once uM (t) is determined,
the signal χM−1(t) becomes available. Subsequently, we can
calculate uM−1(t) by using χM−1(t). Following this recursive
process, all control inputs uM (t), ..., u1(t) can be obtained.
Moreover, to guarantee that the control inputs ui(t), i =
1, ...,M , are nonsingular, it is essential to design αi(t) in a
way such that 1+αi(t)di(t) ̸= 0 for i = 1, ...,M , which will
be elaborated subsequently.

D. Tracking Error Equation

To formulate a parameter update law for the estimated
parameters within the controller, it is imperative to deduce the
tracking error equation using the proposed control law (17).
First, by rearranging (17) we get

ui(t) = ϕTi (t)χi(t) + αi(t)δ
T
i (t)χi(t)− αi(t)di(t)ui(t), (18)
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for i = 1, ...,M . For i = 1, it follows from (15) and (18) that

u1(t) = ϕT1 (t)χ1(t) + α1(t)δ
T
1 (t)χ1(t)− α1(t)d1(t)u1(t)

+α1(t)eξ1(t)− α1(t)eξ1(t)

= ϕT1 (t)χ1(t)− α1(t)(−δT1 (t)χ1(t) + d1(t)u1(t))

+α1(t)(d
∗
1u1(t)− δ∗T1 χ1(t))− α1(t)eξ1(t)

= ϕT1 (t)χ1(t) + α1(t)δ̃
T
1 (t)χ1(t)− α1(t)d̃1(t)u1(t)

−α1(t)eξ1(t), (19)

where δ̃1(t) ≜ δ1(t) − δ∗1 and d̃1(t) ≜ d1(t) − d∗1. For i =
2, ...,M , still considering (15) and (18), it yields

ui(t) = ϕTi (t)χi(t) + αi(t)δ
T
i (t)χi(t)− αi(t)di(t)ui(t)

+αi(t)(eξi(t) + θ∗Ti eθi(t))

−αi(t)(eξi(t) + θ∗Ti eθi(t))

= ϕTi (t)χi(t)− αi(t)(−δTi (t)χi(t) + di(t)ui(t))

+αi(t)(d
∗
i ui(t)− δ∗Ti χi(t))

−αi(t)(eξi(t) + θ∗Ti eθi(t))

= ϕTi (t)χi(t) + αi(t)δ̃
T
i (t)χi(t)− αi(t)d̃i(t)ui(t)

−αi(t)(eξi(t) + θ∗Ti eθi(t)), (20)

where δ̃i(t) ≜ δi(t) − δ∗i and d̃i(t) ≜ di(t) − d∗i . Note that
d∗i ̸= 0 for i = 1, ...,M . Define

ρ∗i =
1

d∗i
, i = 1, ...,M.

Then, it follows from (15) that

ρ∗1eξ1(t) = u1(t)− ϕ∗T1 χ1(t),

ρ∗i (eξi(t) + θ∗Ti eθi(t)) = ui(t)− ϕ∗Ti χi(t), i = 2, ...,M.(21)

Combining (19), (20) and (21), we obtain

(ρ∗1 + α1(t))eξ1(t)

= ϕ̃T1 (t)χ1(t) + α1(t)δ̃
T
1 (t)χ1(t)− α1(t)d̃1(t)u1(t),

and for i = 2, ...,M ,

(ρ∗i + αi(t))(eξi(t) + θ∗Ti eθi(t))

= ϕ̃Ti (t)χi(t) + αi(t)δ̃
T
i (t)χi(t)− αi(t)d̃i(t)ui(t).

Denoting ρi(t) as an estimate of ρ∗ and ρ̃i(t) ≜ ρi(t)−ρ∗i , i =
1, ...,M , we have

(ρ1(t) + α1(t))eξ1(t)

= ϕ̃T1 (t)χ1(t) + α1(t)δ̃
T
1 (t)χ1(t)− α1(t)d̃1(t)u1(t)

+ρ̃1(t)eξ1(t),

and

(ρi(t) + αi(t))(eξi(t) + θ∗Ti eθi(t))

= ϕ̃Ti (t)χi(t) + αi(t)δ̃
T
i (t)χi(t)− αi(t)d̃i(t)ui(t)

+ρ̃i(t)(eξi(t) + θ∗Ti eθi(t)), i = 2, ...,M.

Given ρi(t) + αi(t) ̸= 0, i = 1, ...,M , and defining λ∗i =
ρ∗i θ

∗
i , i = 2, ...,M , we get

eξ1(t) = ϕ̃T1 (t)
χ1(t)

ρ1(t) + α1(t)
+ δ̃T1 (t)

α1(t)χ1(t)

ρ1(t) + α1(t)

−d̃1(t)
α1(t)u1(t)

ρ1(t) + α1(t)
+ ρ̃1(t)

eξ1(t)

ρ1(t) + α1(t)
,(22)

and for i = 2, ...,M ,

eξi(t) + θ∗Ti
αi(t)eθi(t)

ρi(t) + αi(t)
+ λ∗Ti

eθi(t)

ρi(t) + αi(t)

= ϕ̃Ti (t)
χi(t)

ρi(t) + αi(t)
+ δ̃Ti (t)

αi(t)χi(t)

ρi(t) + αi(t)

−d̃i(t)
αi(t)ui(t)

ρi(t) + αi(t)
+ ρ̃i(t)

eξi(t)

ρi(t) + αi(t)
. (23)

For i = 1, ...,M , define

β∗
i = [ϕ∗Ti , δ∗Ti , d∗i , ρ

∗
i ]
T ,

βi(t) = [ϕTi (t), δ
T
i (t), di(t), ρi(t)]

T ,

β̃i(t) = βi(t)− β∗
i ,

ψi(t) =

[
χi(t)

ρi(t) + αi(t)
,
αi(t)χi(t)

ρi(t) + αi(t)
,− αi(t)ui(t)

ρi(t) + αi(t)
,

eξi(t)

ρi(t) + αi(t)

]T
, (24)

and for i = 2, ...,M , define

ηi(t) =
αi(t)eθi(t)

ρi(t) + αi(t)
, ζi(t) =

eθi(t)

ρi(t) + αi(t)
. (25)

Then, with above definitions, it follows from (22) and (23)
that

eξ1(t) = β̃T1 (t)ψ1(t),

eξi(t) + θ∗Ti ηi(t) + λ∗Ti ζi(t) = β̃Ti (t)ψi(t), i = 2, ...,M.(26)

This is the closed-loop tracking error equation for the system
(1) and the reference model (2) under the control law (17).

Lemma 1 describes the role of the modified left inter-
actor matrix ξm(z) as representing the delay structure of
the system transfer matrix G(z). For instance, if ξm(z) =
diag{zd1 , . . . , zdM }, it follows from (13) that eξi(t) = ei(t+
di), which indicates the presence of a time delay di in the i-th
input-output channel. Thus, considering the input-output delay
introduced by the modified left interactor matrix ξm(z), we
need to further conduct some operations on the tracking error
equation (26). For i = 1, ...,M , we select stable polynomial
fi(z) such that its degree is equal to the maximum of the
degrees of the polynomials dj(z) and hmkl(z), j = 1, ..., i, k =
2, ..., i, l = 1, ..., k−1, and it contains di(z) as a factor. With
chosen fi(z), we introduce the following filter operators

hi(z) =
1

fi(z)
, i = 1, ...,M. (27)

Denote H(z) = diag{h1(z), ..., hM (z)}. Further, we define
the filtered tracking error ē(t) as

ē(t) = H(z)ξm(z)[y − ym](t) = [ē1(t), ..., ēM (t)]T . (28)

For the sake of simplification, the stable polynomials fi(z)
can be easily selected as fi(z) = zni for a specified degree
ni, i = 1, ...,M . A consistent choice of the filter operators
is hi(z) = 1/f(z) for i = 1, . . . ,M . Although this choice is
simpler, it may lead to a higher-order filter, given that f(z) is
a stable and monic polynomial whose degree is equal to that
of the modified left interactor matrix ξm(z). Operating both
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sides of (26) with corresponding filter operator hi(z) defined
in (27), we get

ē1(t) = h1(z)[β̃
T
1 ψ1](t),

ēi(t) + θ∗Ti hi(z)[ηi](t) + λ∗Ti hi(z)[ζi](t)

= hi(z)[β̃
T
i ψi](t), i = 2, ...,M. (29)

Now, we get the desired filtered tracking error equation
(29). Notably, based on the definitions of the filter operators
hi(z), i = 1, ...,M , it can be observed from (28) that the
filtered tracking error ē(t) is available at the current moment.
This is crucial for the derivation of a suitable estimation error
model and a reasonable parameter update law. In addition, the
structures of signals ψi(t), i = 1, ...,M , ηi(t) i = 2, ...,M ,
ζi(t), i = 2, ...,M , require ρi(t)+αi(t) ̸= 0, i = 1, ...,M, in
the adaptive process. This would be ensured in the subsequent
analysis, where a unified singularity-free design of control
law (17) and parameter update law to be developed will be
conducted.

Remark 4: To handle unknown signs of the high-frequency
gain matrix, the key idea is to construct a linear parameter es-
timation error equation, based on which the parameter update
law can be directly designed by using gradient or least-squares
techniques. To this end, we propose a new form of control
law (17). Leveraging the parametrization equations (15) and
(21), we derive the closed-loop tracking error equation (26).
Notably, the sign information of the high-frequency gain
matrix is implicitly embedded in parameters β∗

i and λ∗i , which
avoids the multiplication of unknown high-frequency gain
matrix signs and unknown parameters in the tracking error
equation (26). In other words, the tracking error equation (26)
is linear with respect to unknown parameters. In the following,
we will demonstrate that the estimation error model takes the
form of a linear regression and does not need to introduce the
sign information of Kp in the parameter update law.

E. Parameter Update Law

Next, we proceed to develop a gradient based parameter up-
date law using an estimation error cost criterion. To do so, we
define an estimation error ϵ(t) = [ϵ1(t), . . . , ϵM (t)]T , which
measures the discrepancy between the estimated and actual
parameters. Considering the filtered tracking error equation
(29), we estimate ēi(t) by substituting the true parameters with
their estimates. Consequently, the estimation error is expressed
as follows:

ϵ1(t) = ē1(t)− h1(z)[β
T
1 ψ1](t) + βT1 (t)h1(z)[ψ1](t),

ϵi(t) = ēi(t) + θTi (t)hi(z)[ηi](t) + λTi (t)hi(z)[ζi](t)

−hi(z)[βTi ψi](t)+βTi (t)hi(z)[ψi](t), i=2, ...,M, (30)

where θi(t), λi(t) denote estimates of θ∗i , λ
∗
i , i = 2, ...,M ,

respectively. This together with the filtered tracking error
equation (29) yields the estimation error equation as

ϵ1(t) = β̃T1 (t)ψ̄1(t),

ϵi(t) = θ̃Ti (t)η̄i(t) + λ̃Ti (t)ζ̄i(t) + β̃Ti (t)ψ̄i(t), i=2, ...,M,(31)

where θ̃i(t) ≜ θi(t)−θ∗i , i = 2, ...,M , λ̃i(t) ≜ λi(t)−λ∗i , i =
2, ...,M , and

ψ̄i(t) ≜ hi(z)[ψi](t), i = 1, ...,M,

η̄i(t) ≜ hi(z)[ηi](t), i = 2, ...,M,

ζ̄i(t) ≜ hi(z)[ζi](t), i = 2, ...,M. (32)

Based on the estimation error equation (31), we introduce
the following quadratic cost function

J =
1

2m2

M∑
i=1

ϵ2i ,

where m = m(t) is a normalized signal to be defined. Then,
we derive the gradient of J with respect to βi(t), θi(t) and
λi(t) as

∂J

∂βi
=
ϵi(t)ψ̄i(t)

m2(t)
, i = 1, ...,M,

∂J

∂θi
=
ϵi(t)η̄i(t)

m2(t)
, i = 2, ...,M,

∂J

∂λi
=
ϵi(t)ζ̄i(t)

m2(t)
, i = 2, ...,M,

which motivates a gradient based parameter update law as

βi(t+ 1) = βi(t)−
Γβiϵi(t)ψ̄i(t)

m2(t)
, i = 1, ...,M,

θi(t+ 1) = θi(t)−
Γθiϵi(t)η̄i(t)

m2(t)
, i = 2, ...,M,

λi(t+ 1) = λi(t)−
Γλiϵi(t)ζ̄i(t)

m2(t)
, i = 2, ...,M (33)

with

m =
√

1 +
∑M
i=1 ψ̄

T
i ψ̄i +

∑M
i=2 η̄

T
i η̄i +

∑M
i=2 ζ̄

T
i ζ̄i (34)

and Γβi,Γθi,Γλi being adaptive gains such that 0 < Γβi =
ΓTβi < 2I4vM+2M+2−2i, 0 < Γθi = ΓTθi,Γλi = ΓTλi < 2Ii−1.

Remark 5: It is noteworthy that we define the estimation
error ϵ(t) by use of the filtered tracking error ē(t) and filtered
regressor signals, all of which are available at the current
time instant. Therefore, the estimation error ϵ(t) is utilizable
in designing the parameter update law (33). This indicates
that the reasonable causality of adaptive control design is
guaranteed by introducing filtered signals. Specifically, the
modified left interactor matrix ξm(z) makes some signals
unavailable, such as eξ(t), eθi(t), because they include future
time output signals. It is necessary to introduce the filter
operators hi(z), i = 1, ...,M , to deal with these unmeasurable
signals. Failure to do so may lead to casuality contradiction
problem in control design, which is a challenge often encoun-
tered in discrete-time adaptive control systems.

Remark 6: The definitions of d∗i , i = 1, ...,M , indicate
that their sign information can be derived by the signs of
leading principal minors of Kp. These signs, along with the
upper bound knowledge d0i , i = 1, ...,M , are assumed to be
known in (A4b). In some traditional adaptive control schemes,
this information is crucial: the sign of d∗i determines the
direction of parameter updates, and d0i is used to select the
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adaptive gain to ensure the stability of the update law. In
contrast, our method does not need such requirements on Kp

in the parameter update law (33). Therefore, the proposed
control law (17) and parameter update law (33) completely
remove the need for knowledge of sign[d∗i ] and d0i as stated in
(A4b). This is because the estimation error model (31) takes a
linear regression form with respect to the unknown parameters,
differing from the bilinear form typically seen in traditional
estimation error models (see [15], [16] for further details).

Remark 7: The proposed approach removes the need for
prior knowledge of the signs of Kp by introducing an extra
parameter estimate δi(t) in the controller (17). Thus, the
dimensions of parameter vectors to be estimated are slightly
higher than some traditional MRAC design schemes. Addition-
ally, since no excitation condition is imposed on the regressor
signals, the increase of parameter dimension does not influence
transient adaptation.

The following lemma elucidates that the parameter update
law (33) possesses certain desirable properties with respect to
the estimated parameters.

Lemma 3: The parameter update law (33) ensures that
(i) βi(t) ∈ L∞, i = 1, ...,M, θi(t) ∈ L∞, i =

2, ...,M, λi(t) ∈ L∞, i = 2, ...,M ;
(ii) ϵi(t)

m(t) ∈ L2 ∩ L∞, i = 1, ...,M ; and
(iii) βi(t+ i0)−βi(t) ∈ L2 ∩L∞, i = 1, ...,M, θi(t+ i0)−

θi(t) ∈ L2 ∩ L∞, i = 2, ...,M, λi(t + i0) − λi(t) ∈
L2 ∩ L∞, i = 2, ...,M, for any integer i0 > 0.

Proof. Consider the following positive definite function

V (β̃i, θ̃i, λ̃i) =

M∑
i=1

β̃Ti Γ
−1
βi β̃i +

M∑
i=2

θ̃Ti Γ
−1
θi θ̃i

+

M∑
i=2

λ̃Ti Γ
−1
λi λ̃i.

Then, it follows from (33) that the time increment of V is

V (β̃i(t+ 1), θ̃i(t+ 1), λ̃i(t+ 1))− V (β̃i(t), θ̃i(t), λ̃i(t))

= −
M∑
i=1

(
2− ψ̄Ti (t)Γβiψ̄i(t)

m2(t)

)
ϵ2i (t)

m2(t)

−
M∑
i=2

(
2− η̄Ti (t)Γθiη̄i(t)

m2(t)

)
ϵ2i (t)

m2(t)

−
M∑
i=2

(
2− ζ̄Ti (t)Γλiζ̄i(t)

m2(t)

)
ϵ2i (t)

m2(t)
.

From the conditions of Γβi,Γθi,Γλi and the definition
of m(t) in (34), we obtain 2 − ψ̄T

1 Γβ1ψ̄1

m2 > 0 and
2 −

(
ψ̄T

i Γβiψ̄i

m2 +
η̄Ti Γθiη̄i
m2 +

ζ̄Ti Γλiζ̄i
m2

)
> 0, i = 2, ...,M .

Then, for some constants ki, i = 1, ...,M , such that
0 < k1 < 2 − ψ̄T

1 Γβ1ψ̄1

m2 and 0 < ki < 2 −(
ψ̄T

i Γβiψ̄i

m2 +
η̄Ti Γθiη̄i
m2 +

ζ̄Ti Γλiζ̄i
m2

)
, i = 2, ...,M , we obtain

V (β̃i(t+ 1), θ̃i(t+ 1), λ̃i(t+ 1))− V (β̃i(t), θ̃i(t), λ̃i(t)) ≤
−
∑M
i=1

kiϵ
2
i (t)

m2(t) . This implies that βi(t), θi(t), λi(t) ∈ L∞

and ϵi(t)
m(t) ∈ L2. From (31), we have ϵi(t)

m(t) ∈ L∞, i = 1, ...,M .
From (33), we have βi(t+1)−βi(t), θi(t+1)−θi(t), λi(t+
1)− λi(t) ∈ L2 ∩ L∞. Finally, using the inequalities

||βi(t+ i0)− βi(t)||2 ≤
i0−1∑
k=0

||βi(t+ k + 1)− βi(t+ k)||2,

||θi(t+ i0)− θi(t)||2 ≤
i0−1∑
k=0

||θi(t+ k + 1)− θi(t+ k)||2,

||λi(t+ i0)− λi(t)||2 ≤
i0−1∑
k=0

||λi(t+ k + 1)− λi(t+ k)||2,

we obtain βi(t+ i0)− βi(t), θi(t+ i0)− θi(t), λi(t+ i0)−
λi(t) ∈ L2 ∩ L∞ for any integer i0 > 0. This completes the
proof. □

This lemma demonstrates that the parameter update law (33)
ensures certain desired properties for the parameter estimates.
These properties are useful for the subsequent analysis of
the closed-loop system stability. Notably, although Lemma 3
implies that limt→∞(βi(t+1)−βi(t)) = 0 for i = 1, . . . ,M ,
limt→∞(θi(t + 1) − θi(t)) = 0 for i = 2, . . . ,M , and
limt→∞(λi(t+1)−λi(t)) = 0 for i = 2, . . . ,M , this does not
necessarily guarantee that the parameter estimates βi(t), θi(t),
and λi(t) converge to their true values β∗

i , θ
∗
i , λ

∗
i , respectively.

This is because the proposed control technique does not rely on
any form of excitation condition. Nevertheless, the asymptotic
output tracking objective can be achieved, which will be
proved in the following main result.

F. Singularity-Free Design
From the structures of the control law (17) and the param-

eter update law (33), it is evident that the control algorithm
may blow up if 1 + αi(t)di(t) = 0 or αi(t) + ρi(t) = 0
occurs during the control process. Therefore, to ensure that
both the adaptive control law and the parameter update law
remain nonsingular at all times, we need to design αi(t) to
guarantee

1 + αi(t)di(t) ̸= 0, i = 1, ...,M, (35)
αi(t) + ρi(t) ̸= 0, i = 1, ...,M, (36)

for any possible real value di(t) and ρi(t). To achieve this,
the gain functions αi(t), i = 1, ...,M , are designed as

αi(t) =

{
− (|ρi(t)|+ αi) , di(t) < 0,
|ρi(t)|+ αi, di(t) ≥ 0,

(37)

where αi, i = 1, ...,M , are arbitrary positive constants to
be chosen. The following lemma shows that no singularity
problem would arise in the adaptive process with αi(t), i =
1, ...,M, defined as (37).

Lemma 4: The gain functions αi(t), i = 1, ...,M , de-
signed in (37) ensure that (35) and (36) always hold.

Proof. Firstly, we prove the condition (36). When di(t) < 0,
with the definition of αi(t) in (37), we obtain

αi(t) + ρi(t) = −|ρi(t)| − αi + ρi(t)

=

{
−αi, ρi(t) ≥ 0,
2ρi(t)− αi, ρi(t) < 0,

i = 1, ...,M.
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Due to αi > 0, it yields αi(t)+ ρi(t) < 0 when di(t) < 0 for
i = 1, ...,M . Similarly, when di(t) ≥ 0, we get

αi(t) + ρi(t) = |ρi(t)|+ αi + ρi(t)

=

{
2ρi(t) + αi, ρi(t) ≥ 0,
αi, ρi(t) < 0,

i = 1, ...,M.

This implies that αi(t)+ρi(t) > 0 with arbitrary αi > 0 when
di(t) ≥ 0 for i = 1, ...,M . Hence, (36) holds.

Then, we consider the condition (35). When di(t) < 0, it
follows from (37) that

1 + αi(t)di(t) = 1− (|ρi(t)|+ αi) di(t)

= 1− |ρi(t)|di(t)− αidi(t), i = 1, ...,M.

Since di(t) < 0, we get 1−|ρi(t)|di(t)−αidi(t) > 0 is always
true with arbitrary αi > 0 for i = 1, ...,M . When di(t) ≥ 0,
we have

1 + αi(t)di(t) = 1 + (|ρi(t)|+ αi) di(t)

= 1 + |ρi(t)|di(t) + αidi(t), i = 1, ...,M.

It follows from αi > 0 that 1 + |ρi(t)|di(t) + αidi(t) > 0
is always true when di(t) ≥ 0 for i = 1, ...,M . Thus, (35)
holds. This completes the proof. □

Remark 8: Different from the traditional control laws (8)
and (16), this paper introduces a new form of the controller
(17). The derived gradient based parameter update law (33) no
longer necessitates prior sign information of Kp. However, the
inclusion of denominator terms 1+ρi(t)di(t) and αi(t)+ρi(t)
may cause singularity problem in the adaptive process. To
address this concern, we introduce time-varying gain functions
αi(t), i = 1, ...,M, as defined in (37), achieving a unified
singularity-free design for the control law (17) and the param-
eter update law (33). As demonstrated in Lemma 4, the well-
designed αi(t), i = 1, ...,M , ensure that 1 + ρi(t)di(t) and
αi(t) + ρi(t) are always non-zero. Therefore, the control law
(17) and the parameter update law (33) remain implementable
throughout the control process.

G. Stability Analysis
Based on above derivations, we are ready to present the

main result of this paper as follows.

Theorem 1: Under Assumptions (A1)-(A4), the adaptive
control law (17) along with the parameter update law (33),
applied to the system (1), ensures the closed-loop system is
stable and the system output y(t) tracks the reference output
y∗(t) asymptotically, i.e., limt→∞(y(t)− y∗(t)) = 0.

Proof. First, we prove some bounded properties of the
regressor vectors ψ̄i(t), i = 1, ...,M , η̄i(t), i = 2, ...,M ,
and ζ̄i(t), i = 2, ...,M . From the definition of ψi(t) in (24)
and the bound property of the estimated parameters demon-
strated in Lemma 3, we have ||ψi(t)|| ≤ cmaxk≤t ||u(k)|| +
cmaxk≤t ||y(k)||+cmaxk≤t ||eξ(k)||+c, i = 1, ...,M, where
c > 0 denotes a generic signal bound. Since y∗(t) is bounded,
we get

||ψi(t)|| ≤ cmax
k≤t

||u(k)||+ cmax
k≤t

||e(k)||

+cmax
k≤t

||eξ(k)||+ c, i = 1, ...,M. (38)

Since e(t) = ξ−1
m (z)[eξ](t) and ξ−1

m (z) is proper and stable,
we have

||e(t)|| ≤ cmax
k≤t

||eξ(k)||+ c. (39)

Then, for i = 1, ...,M , it follows from (38) and (39) that

||ψi(t)|| ≤ cmax
k≤t

||u(k)||+ cmax
k≤t

||eξ(k)||+ c. (40)

From the system model (1), we have u(t) = G−1(z)[y](t) =
(ξm(z)G(z))−1ξm(z)[y](t). From Lemma 1, we obtain that
(ξm(z)G(z))−1 is proper. From Assumption (A1) and the
definition of ξm(z), we get (ξm(z)G(z))−1 is stable. Then,
combing the bounded property of y∗(t), we have

||u(t)|| ≤ cmax
k≤t

||ξm(z)[y](k)||+ c

≤ cmax
k≤t

||eξ(k)||+ c. (41)

Combining (40) and (41), we get

||ψi(t)|| ≤ cmax
k≤t

||eξ(k)||+ c, i = 1, ...,M. (42)

Since ψ̄i(t) = hi(z)[ψi](t) and hi(z) = 1
fi(z)

with fi(z)

being stable, we obtain ||ψ̄i(t)|| ≤ cmaxk≤t ||ψi(k)||+c, i =
1, ...,M. This together with (42) gives

||ψ̄i(t)|| ≤ cmax
k≤t

||eξ(k)||+ c, i = 1, ...,M. (43)

Similarly, leveraging the definitions of η̄i(t) and ζ̄i(t) along
with the bounded properties of the estimated parameters
provided in Lemma 3, we derive

||η̄i(t)|| ≤ cmax
k≤t

||eξ(k)||+ c, i = 2, ...,M,

||ζ̄i(t)|| ≤ cmax
k≤t

||eξ(k)||+ c, i = 2, ...,M. (44)

Next, we establish the stability of the closed-loop system.
Without loss of generality, let fi(z) be selected as zni with a
specified degree ni for i = 1, ...,M . Utilizing the definition
of the estimation error in (30), we obtain

ē1(t) = ϵ1(t) + h1(z)[β
T
1 ψ1]− βT1 (t)h1(z)[ψ1](t)

=
ϵ1(t)

m(t)
m(t)− (β1(t)− β1(t− n1))

T ψ̄1(t), (45)

and for i = 2, ...,M ,

ēi(t) + θTi (t)hi(z)[ηi](t) + λTi (t)hi(z)[ζi](t)

= ϵi(t) + hi(z)[β
T
i ψi]− βTi (t)hi(z)[ψi](t)

=
ϵi(t)

m(t)
m(t)− (βi(t)− βi(t− ni))

T ψ̄i(t). (46)

Recalling the definition of m(t) in (34), it follows from (43)
and (44) that

||m(t)|| ≤ 1 +

M∑
i=1

||ψ̄i(t)||+
M∑
i=2

||η̄i(t)||+
M∑
i=2

||ζ̄i(t)||

≤ cmax
k≤t

||eξ(k)||+ c. (47)
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Combining (43), (45) and (47), we get

||ē1(t)|| ≤
∣∣∣∣∣∣∣∣ ϵ1(t)m(t)

∣∣∣∣∣∣∣∣ ||m(t)||+ ||β1(t)− β1(t− n1)||||ψ̄1(t)||

≤ c||β1(t)− β1(t− n1)||max
k≤t

||eξ(k)||+ c

+c

∣∣∣∣∣∣∣∣ ϵ1(t)m(t)

∣∣∣∣∣∣∣∣max
k≤t

||eξ(k)||.

According to Lemma 3, we have β1(t)−β1(t−n1) ∈ L2∩L∞

and ϵ1(t)
m(t) ∈ L2 ∩ L∞. Then, we get

||ē1(t)|| ≤ τ(t)max
k≤t

||eξ(k)||+ c, (48)

where τ(t) denotes a generic L2 ∩ L∞ function which con-
verges to zero as t goes to ∞. Recalling the definitions of
η̄2(t) and ζ̄2(t) in (32), as well as the definitions of η2(t) and
ζ2(t) in (25), and combining (48), we obtain

||η̄2(t)|| ≤ c||ē1(t)||+ c ≤ τ(t)max
k≤t

||eξ(k)||+ c,

||ζ̄2(t)|| ≤ c||ē1(t)||+ c ≤ τ(t)max
k≤t

||eξ(k)||+ c. (49)

Then, it follows from (43), (46), (47), (49) and Lemma 3 that

||ē2(t)||

≤
∣∣∣∣∣∣∣∣ ϵ2(t)m(t)

∣∣∣∣∣∣∣∣ ||m(t)||+ ||β2(t)− β2(t− n2)||||ψ̄2(t)||

+||θ2(t)||||η̄2(t)||+ ||λ2(t)||||ζ̄2(t)||
≤ τ(t)max

k≤t
||eξ(k)||+ c.

Similarly, we obtain ||ē3(t)|| ≤ τ(t)maxk≤t ||eξ(k)|| + c.
Following this procedure, we recursively derive ||ēi(t)|| ≤
τ(t)maxk≤t ||eξ(k)||+ c, i = 1, ...,M, and hence, ||ē(t)|| ≤
τ(t)maxk≤t ||eξ(k)||+ c, which implies that ē(t) is bounded.
Therefore, we get e(t) is bounded and in turn y(t) is bounded.
Then, it follows from the minimum phase nature of the
system (1) that u(t) is also bounded. Furthermore, it can be
demonstrated that all closed-loop signals are bounded, which
means the closed-loop system is stable.

Finally, we prove the tracking performance. From (45) in
which ϵ1(t)

m(t) ∈ L2 and β1(t)−β1(t−n1) ∈ L2, we have ē1(t) ∈
L2, that is, limt→∞ ē1(t) = 0. Considering the definitions of
η̄2(t) and ζ̄2(t) in (32), it follows from limt→∞ ē1(t) = 0 that
η̄2(t) ∈ L2 and ζ̄2(t) ∈ L2. Subsequently, utilizing Lemma 3
and (46), we conclude that ē2(t) ∈ L2, that is, limt→∞ ē2(t) =
0. Following this procedure, we can recursively derive that
ēi(t) ∈ L2 and limt→∞ ēi(t) = 0 for i = 1, ...,M . Thus,
ē(t) ∈ L2 and limt→∞ ē(t) = 0. Due to the stability of the
inverse of ξm(z), it can be inferred that limt→∞ e(t) = 0.
This completes the proof. □

So far, we have developed a new adaptive controller (17)
along with a parameter updater law (33) for the MIMO
discrete-time LTI system (1). The proposed method relies
solely on a mild design condition on the high-frequency
matrix, and still achieves the same asymptotic tracking perfor-
mance as some well-developed traditional design schemes. Im-
portantly, the proposed method does not involve multi-model
parameter estimation burden and the persistent switching issue.

IV. SIMULATION STUDY

This section gives two simulation examples, covering a nu-
merical example and an aircraft dynamics model, to showcase
the design process and substantiate the theoretical findings.

A. Simulation for A Numerical Example

First, we introduce a numerical example to verify the
effectiveness of the proposed control method.

Simulation model. Consider the following system model

y(t) = G(z)[u](t) (50)

with

G(z) = Z(z)P−1(z) =

[
1

z+0.1
z−0.3

(z+0.1)(z+1.1)

0 z+0.8
(z+0.1)(z+1.1)

]
, (51)

where

P (z) =

[
z + 0.1 0

0 z2 + 1.2z + 0.11

]
,

Z(z) =

[
1 z − 0.3
0 z + 0.8

]
. (52)

Hence, we determine that the modified left interactor matrix
of the transfer function G(z) is

ξm(z) =

[
z 0
0 z

]
, (53)

which has a proper and stable inverse. Subsequently, we
calculate the high-frequency gain matrix Kp of G(z) is

Kp = lim
z→∞

ξm(z)G(z) =

[
1 1
0 1

]
, (54)

which is nonsingular. From (52), we calculate det[Z(z)] =
z+0.8, which means that the system (50) is minimum phase.
Moreover, the observability index of the system (50) is 2.
From (54), we calculate the leading principle minors of Kp

are ∆1 = 1 and ∆2 = 1, which are non-zero. In the
simulation example, it is assumed that the constant parameters
in G(z) are all unknown. The reference model is selected as
y∗(t) = ξ−1

m (z)[r](t), where r(t) = [4 sin 0.3t, 5 cos 0.3t]T

and ξm(z) is determined in (53).

Parameter setting. Utilizing the definition in (3) and the
observability index of the system (50), we determine A(z) =
I2. Choose Λ(z) = z. Consequently, we derive ω1(t) and
ω2(t) using (3). Subsequently, by employing the matching
equation (4), we determine

Θ∗T
1 =

[
0.1 −3.3
0 −0.8

]
,Θ∗T

2 =

[
−0.01 0.45

0 −0.8

]
,

Θ∗
20 =

[
0 4.4
0 1.2

]
,Θ∗

3 =

[
1 −1
0 1

]
.

From (54), we decompose Kp as Kp = LD∗U , where

L =

[
1 0
0 1

]
, D∗ =

[
1 0
0 1

]
, U =

[
1 1
0 1

]
.
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Then, we obtain

Φ∗T
1 =

[
0.1 −4.1
0 −0.8

]
,Φ∗T

2 =

[
−0.01 0.56

0 0.11

]
,

Φ∗
20 =

[
0 5.6
0 1.2

]
,Φ∗

3 =

[
1 0
0 1

]
,Φ∗

0 =

[
0 1
0 0

]
,

and Θ∗
0 = 02, θ

∗
2 = 0. Thus, it yields

ϕ∗1 = [1, 0.1,−4.1,−0.01, 0.56, 0, 5.6, 1, 0]T ,

ϕ∗2 = [0,−0.8, 0, 0.11, 0, 1.2, 0, 1]T .

With d∗1 = ∆1 = 1 and d∗2 = ∆2

∆1
= 1, we get δ∗1 = ϕ∗1 and

δ∗2 = ϕ∗2. Since ρ∗i =
1
d∗i

, we have ρ∗1 = 1, ρ∗2 = 1. From λ∗2 =

ρ∗2θ
∗
2 , we have λ∗2 = 0. From the form of ω(t), we determine

χ2(t) = ω(t). Denote ϕ2(t), δ2(t), d2(t), ρ2(t), θ2(t), λ2(t) as
estimates of ϕ∗2, δ

∗
2 , d

∗
2, ρ

∗
2, θ

∗
2 , λ

∗
2, respectively, with ϕ2(t) =

[ϕ21(t), ..., ϕ28(t)]
T and δ2(t) = [δ21(t), ..., δ28(t)]

T . Then,
according to (17), we calculate u2(t) with α2(t) being deter-
mined by (37) and α2 = 0.5. With u2(t) to hand, we ob-
tain χ1(t) = [u2(t), ω

T (t)]T . Denote ϕ1(t), δ1(t), d1(t), ρ1(t)
as estimates of ϕ∗1, δ

∗
1 , d

∗
1, ρ

∗
1, respectively, with ϕ1(t) =

[ϕ11(t), ..., ϕ19(t)]
T and δ1(t) = [δ11(t), ..., δ19(t)]

T . Then,
we calculate u1(t) with α1(t) being determined by (37) and
α1 = 0.5. Choose

ϕ1(0) = [0.5, 0.15,−3,−0.1, 0.4, 0.5, 5, 1.5, 0.5]T ,

ϕ2(0) = [−0.2,−0.6, 0.1, 0.1, 0.2, 1, 0, 1]T ,

δ1(0) = [0.6, 0.2,−3.8, 0, 0.5, 0.1, 5, 1.2, 0.2]T ,

δ2(0) = [0.3,−1, 0, 0.2, 0, 1, 0, 0.8]T ,

and d1(0) = 1.3, d2(0) = 0.7, ρ1(0) = 1.6, ρ2(0) =
0.5, λ2(0) = 0.2, θ2(0) = 0.9. Moreover, we choose adaptive
gains Γβ1 = 0.9I20,Γβ2 = 0.9I18,Γθ2 = 0.9,Γλ2 = 0.9, fil-
ter operators h1(z) = 1/z, h2(z) = 1/z, and y(0) = [5,−4]T .
Consequently, the parameter update law can be obtained in
(32) with all chosen parameters and regressors.

Simulation figures. The system response is depicted in
Figs. 1-5. Fig. 1 presents the system output y(t) versus the
reference output y∗(t), which illustrates that y(t) tracks y∗(t)
asymptotically. Fig. 2 displays the trajectory of the control
input u(t). Fig. 3 shows the trajectories of time-varying
gain functions α1(t) and α2(t), as well as corresponding
singularity-free indices αi(t) + ρi(t) and 1 + αi(t)di(t), i =
1, 2. From this figure, we see that conditions αi(t)+ρi(t) ̸= 0
and 1 + αi(t)di(t) ̸= 0, i = 1, 2, always hold, which is
consistent with the conclusion of Lemma 4. Fig. 4 and Fig.
5 show the trajectories of part of the estimated parameters.
All these figures demonstrate that closed-loop signals are
bounded. Notably, the proposed control scheme does not
depend on any type of excitation condition. Consequently,
parameter estimations may not converge to the corresponding
true values, as illustrated in Fig. 4 and Fig. 5. Nevertheless, the
asymptotic output tracking control objective is still achieved.
In conclusion, the simulation results affirm the effectiveness
of the proposed output feedback adaptive control strategy.
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Fig. 1. Trajectories of the output y(t) and the reference output y∗(t)
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B. Simulation for A Linearized Aircraft Model

In this subsection, we simulate the linearized lateral dynam-
ics model of the Boeing 747 airplane to verify the validity of
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the proposed control strategy.

Simulation model. The linearized lateral dynamics of Boe-
ing 747 can be described as ([43])

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (55)

where x(t) = [β, rb, p, ϕ] is the state vector with β, rb, p, and
ϕ being the side-slip angle, the yaw rate, the roll rate, and
the roll angle, respectively, y(t) = [y1, y2]

T = [β, rb]
T is the

system output vector consisting of the side-slip angle β and the
yaw rate rb, and u(t) = [u1, u2]

T = [δr1, δr2]
T is the control

input vector consisting of two rudder servos. From the data
provided in [43], in horizontal flight at 40000 ft and nominal
forward speed 774 ft/sec (Mach 0.8), the Boeing 747 lateral
dynamics matrices are

A =


−0.0558 −0.9968 0.0802 0.0415
0.5980 −0.1150 −0.0318 0.0000
−3.0500 0.3880 −0.4650 0.0000
0.0000 0.0805 1.0000 0.0000

 ,

B =


0.0073 0.0100
−0.4750 −0.5000
0.1530 0.2000
0.0000 0.0000

 .
Using the zero-order holder method and a sampling time

T = 0.1 sec, we obtain the corresponding discrete-time system
state space model of (55) as ([44])

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (56)

where

A =


0.9902 −0.0985 0.0082 0.0041
0.0597 0.9855 −0.0028 0.0001
−0.2956 0.0525 0.9533 −0.0006
−0.0147 0.0104 0.0977 1.0000

 ,

B =


0.0031 0.0036
−0.0472 −0.0497
0.0137 0.0182
0.0005 0.0007

 , C =

[
1 0 0 0
0 1 0 0

]
. (57)

From the state space representation (57), we calculate the
transfer function of system (56) as G(z) = C(zI −
A)−1B = Z(z)P−1(z), where P (z) = diag{z3−2.9832z2+
2.9756z − 0.9924, z3 − 2.9832z2 + 2.9756z − 0.9924}
and Z(z) = [Z1(z), Z2(z)] with Z1(z) = [0.0031z2 −

0.0014z − 0.0017,−0.0472z2 + 0.0936z − 0.0469]T and
Z2(z) = [0.0036z2−0.0021z−0.0015,−0.0497z2+0.0986z−
0.0494]T . Then, we determine the modified left interactor
matrix of G(z) is the same as (53). Thus, we get the high-
frequency gain matrix Kp of G(z) as

Kp = lim
z→∞

ξm(z)G(z) =

[
0.0031 0.0036
−0.0472 −0.0497

]
. (58)

Then, we can verify that the system (56) is minimum
phase. Moreover, the observability index of the system (56)
is 2. From (58), we calculate ∆1 = 0.0031 and ∆2 =
0.0000158 in this simulation, which are non-zero. The ref-
erence model is chosen as y∗(t) = ξm(z)[r](t) with r(t) =
[0.01 sin 0.2t deg, 0.01 cos 0.2t deg/sec]T .
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Fig. 6. Trajectories of β(t), rb(t) and the reference output y∗(t)
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Parameter setting. With the observability index being 2, we
choose λ(z) = z and A(z) = I2 in this simulation. Utilizing
the matching equation (4), we determine

Θ∗T
1 =

[
−29.4746 −31.9747
2.8976 3.9428

]
,

Θ∗T
2 =

[
−3114.3243 738.0676
2957.6681 −169.7057

]
,

Θ∗
20 =

[
6221.1230 −511.7109
−5908.1893 −25.5855

]
,

Θ∗
3 =

[
−3135.6467 −227.1293
2977.9180 195.5836

]
.

Moreover, we decompose Kp in (58) as Kp = LD∗U with

L =

[
1 0

−15.2258 1

]
, D∗ =

[
0.0031 0

0 0.0051

]
,

U =

[
1 1.1613
0 1

]
.

Then, we can calculate the parameters Φ∗
1,Φ

∗
2,Φ

∗
20,Φ

∗
3,Φ

∗
0,

and Θ∗
0 with determined parameters Θ∗

1,Θ
∗
2,Θ

∗
20,Θ

∗
3, and

L,D∗, U . Furthermore, we can obtain all needed controller
parameters. In this simulation, the initial parameter estimates
are chosen as 85% of the true values. Moreover, we choose
adaptive gains Γβ1 = 0.7I20,Γβ2 = 0.7I18,Γθ2 = 0.7,Γλ2 =
0.7, filter operators h1(z) = 1/z, h2(z) = 1/z, and initial state
x(0) = [0 deg, 0 deg/sec, 0 deg/sec, 0.1 deg]T . In addition,
we choose α1 = 0.5 and α2 = 0.5 for the time-varying gain
functions α1(t) and α2(t), respectively. With all chosen initial
parameters, the control law and parameter update law can be
derived by (17) and (33), respectively.

Simulation figures. The system response is illustrated in
Figs. 6-10. Fig. 6 shows the response of the system output
y(t) (the side-slip angle β(t) and the yaw rate rb(t)), and
the reference output y∗(t), which illustrates that y(t) tracks
y∗(t) asymptotically. Fig. 7 presents the trajectories of the
control inputs δr1 and δr2. Fig. 8 shows the trajectories
of time-varying gain functions α1(t) and α2(t), as well as
corresponding singularity-free indices αi(t) + ρi(t) and 1 +
αi(t)di(t), i = 1, 2, for the simulation model (56). It displays
that αi(t) + ρi(t) ̸= 0 and 1 + αi(t)di(t) ̸= 0, i = 1, 2,
in the adaptive control process. Fig. 9 and Fig. 10 show the
trajectories of part of the estimated parameters. Similarly, the
parameter estimates may not converge to their nominal values
as shown in Fig. 9 and Fig. 10, but the asymptotic tracking
control objective is still achieved. In summary, the proposed
control method also works for the discrete-time linearized
lateral dynamics model (56).

V. CONCLUDING REMARKS

This paper has addressed the parameter estimation and
adaptive singularity-free control problem for a general class of
MIMO discrete-time LTI systems with all system parameters
being unknown. The development of a novel output feedback
adaptive control scheme obviates the necessity for prior knowl-
edge of the sign and bound information of the high-frequency
gain matrix. Compared with the existing results, the proposed
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Fig. 9. Trajectories of d1(t), d2(t), ρ1(t), ρ2(t), λ2(t), θ2(t)
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adaptive control law does not rely on any additional design
conditions; however, it still ensures closed-loop stability and
asymptotic output tracking without incurring any switching
mechanism. Several topics warrants further investigation based
on the results of this paper. For instance, exploring the
application of the proposed control scheme for systems with
time-varying control gain matrices is a topic worth studying.
Moreover, extending the proposed method to continuous-time
MIMO systems remains unclear, where stability analysis and
overall design mechanism are different from discrete-time
case of this work. Further, evaluating the robustness of the
proposed control scheme under additive/multiplicative external
disturbances is crucial for its practical applicability.
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